
Courseware as Code
Setting a new bar for transparency and collaboration

Abstract— This Innovative Practice Category Work In
Progress proposes creating and managing all courseware as code.
Based on our school’s success with this approach in achieving
rapid synchronized collaboration, we recommend educational
organizations consider adopting this idea. While DevOps and
Continuous Integration/Continuous Deployment (CI/CD) have
brought software and network engineering into the twenty-first
century, academic courseware has not seen organization-wide
process improvement at the same scale. Inspired by industry
best practices, our school chose to develop courseware flexibly
within a GitLab instance. Through GitLab, we facilitate change
discussions, provide transparency in updates, and allow faculty,
students, and even the workforce to identify issues and suggest
content. This enables space for necessary, creative, and even
innovative changes by giving all users a voice in the change
process and setting a culture of contribution.

In its first year, Courseware as Code enabled over 250 students
in 30 classes to benefit from standardized yet flexible and
up-to-date content. For our core course, 29 instructors over
up to three geographically disparate locations stayed engaged
with 5,085 commits and 113 issues raised and discussed. To
our knowledge, no other similarly sized and divided group
of instructors has achieved this level of collaboration towards
synchronized courseware.

Index Terms—courseware, version control, educational tech-
nology, collaborative software, distributed management

I. INTRODUCTION

In 2014, we were given a task to stand up a school to meet
a workforce need. As we began to create content as quickly
as possible (often described as ’building an airplane while
in flight’ by a senior school official), we turned to cloud-
hosted storage and synchronization. With many contributors
but without rigorous control on groups, permissions, and
content visibility and acceptance, we recognized our need
for increased structure and improved workflows. Through a
GitLab instance, we chose to implement an ’Everything as
Code’ mentality to both our virtual training resources and labs
and our courseware.

Reviewing existing documented uses of distributed revision
control systems (DVCS) did not reveal a courseware synchro-
nization use case that matched our own. In 2007, the Rose-
Hulman Institute of Technology used a centralized version
control system (VCS) to synchronize two CS1 classes between
two instructors and one teaching assistant [1]. They noted that
the VCS simplified sharing materials, reduced duplicative con-
tent development, and provided transparency to contributions.
While they recommended VCS for widespread adoption, they
did not publish additional work on iterative improvements or
teaching base expansions. In 2013, an Arizona State University
(ASU) group created a web interface to simplify instructor

interaction with a DVCS through a set workflow but they
did not publish results on the efficacy of the interface [4].
Continuing in 2017, ASU proposed a new web framework
with a GitHub backend in which instructors use markdown
through SimpleMDE [5]. As before, they did not use their
proposed system in a class, settling instead for a faculty review
of the framework’s potential. Other published cases focused
on teaching students to use VCS although many educators
also noted the benefits to courseware improvement. In 2013,
a Massachusetts-based group implemented git in a CS1 class
that included non-CS engineering students [3]. They found
even the non-CS majors settled quickly into using DVCS,
never questioned the value of learning DVCS, and cited its
benefits and relevance to job skills. In 2014, a professor in
Ireland used git for second and third year CS students based on
industry demand for job applicants with VCS experience [2].
His students surprisingly preferred the Bash git command
shell over GUI tools or Visual Studio integration because
it allowed them to engage at the level of their ability and
increase their understanding and skill without limitations. A
2015 research paper on the use of GitHub in education found
that DVCS surpassed traditional learning management systems
(LMSs) by enabling additional interactions to include stu-
dents contributing to course materials instead of only viewing
them [6]. The authors of that research identified limitations in
DVCS adoption due to a lack of support for PDFs and LaTeX
and no existing measurements of student contribution or the
acutal efficacy of the sense of a participatory culture. With
our implementation of GitLab and its automated workflows
as the courseware repository for our multi-instructor, multi-
contributor, location-disparate classes, we believe we have
solved many of the limitations to using DVCS for education.

II. COURSEWARE AS CODE CONCEPT

Using a DevOps and Continuous Integration/Continuous
Deployment (CI/CD) philosophy, our school chose a GitLab
instance to maintain both our configuration management for
infrastructure and our curriculum artifacts for five primary
courses: our four programming modules (C, PowerShell, Bash,
and Python) and our technical core course. Our core course
engages students in problem solving, research, and gaining
a situational understanding of cyberspace security through
the topics of Windows, Linux, and networking. For each of
these courses, we established a structure of public, internal,
and private1 project repositories to allow fine-grained control

1Using GitLab visibility levels as project names; see https://docs.gitlab.com/
ee/public access/public access.html



of user groups to encourage collaboration while maintaining
accreditation-required controls and material integrity.

By leveraging applicable aspects of the software devel-
opment lifecycle for curriculum management, we envisioned
facilitating discussion of suggested changes amongst faculty,
transparency for updates, creating custom workflows based
on the complexity of course content, and allowing faculty,
students, and members of our workforce to identify issues and
contribute content. We wanted to enable substantive changes
to occur smoothly by requiring contributors to enter all course
content in a machine-readable markup language. To date
we have leveraged Asciidoctor; markdown, LaTeX, reStruc-
turedText, or any other document formatting and preparation
method would also work effectively. Our concept includes
replacing non-markup language file formats (e.g. WYSIWYG
slides, word processor documents, spreadsheets) with markup
language formats and leveraging CI pipelines to create PDFs,
html5 slide decks, and more for distribution.

Using a DVCS would also allow us to create trackable
versions of courseware with branches, tags, and other git
features to enable quality assessments correlated to time and
content changes. The version control process could support
zeroing in on specific commit sets to analyze whether a
specific change improved or degraded student performance.
Applying this idea directly to assessments could allow us to
validate test material on a per-question basis and automate test
assembly with questions chosen randomly from an objectives-
based associative array.

III. COURSEWARE AS CODE IMPLEMENTATION

Although we have not yet realized 100% markup language
uniformity or automated analysis of assessment material, we
have successfully implemented the primary components of
Courseware as Code. In addition to enforcing the standardized
project repository structure for our five courses, we focused
our implementation on user accounts and permissions, content
creation and improvement processes, content delivery, au-
tomating workflows, and instructor buy-in. Since we launched
it in January of 2017, our implementation has gained momen-
tum and success.

Implementing the Courseware as Code concept structure
requires user accounts to which we assign roles and per-
missions. We initially provisioned accounts manually, but we
outpaced our ability to sustain this as our school size grew and
workforce members gained interest in participating. To enable
our system to support students and the workforce, we needed
an automated way to provision user accounts. We designed
an account creation and approval process with priority to
scalability and simplicity. We leverage an existing and well-
maintained workforce-affiliated PKI infrastructure to authorize
valid smart cards with current root certificate authority. This
automatic process enables users to register and log in to
our GitLab instance at the guest user permission level2 for

2GitLab user permission levels available at https://docs.gitlab.com/ee/user/
permissions.html

public projects without requiring individual verification or
ticket servicing by IT support staff.

Our project repository structure works with user account
permissions to provide controls for content access and editing.
Public projects contain freely-available materials that anyone
can view with or without authentication. We use the Apache
2.0 license for all of our public courseware to encourage
sharing. Internal projects contain material to assist instructors
including instructor guides and example solutions but do not
contain testing material. During on-boarding, we give our
instructors developer-level access to our public and internal
projects. Private projects contain official testing and assess-
ment materials. A controlled list of personnel have access to
these projects so we may maintain test material integrity and
prevent instructors from ’teaching to the test’.

All users authorized for an account in our GitLab instance
may request access to contribute to courseware from course
managers and senior instructors. If requesting access to an
internal or private project, we individually consider the nature
of the user’s request and require the user to sign both a
contributor license agreement and a non-disclosure agreement.
Course managers may grant users developer-level access so
they may contribute new content and suggested adjustments on
branches. Course instructors can review and discuss the merge
requests for the branches on the basis of quality, accuracy,
and relevancy prior to the course manager or senior instructor
approving or denying the requests. Through this process of
creating, proposing, discussing and implementing changes in
real time, we realize the benefits of CI/CD in developing
accurate, relevant, and current courseware.

Although we chose to use GitLab to host our courseware,
we also work with our university’s LMS, Blackboard, for
student content access and assignment submissions. Prior to
integrating with GitLab content, the courseware entered into
Blackboard lacked version control and historical information
on changes. The lack of information caused frustration in in-
structors not knowing whom to talk to about content concerns
and resulted in churn of limited resources. With Courseware
as Code, we completely changed that process and improved
courseware creativity and efficiency. Although we have not yet
achieved continuous delivery of content to Blackboard, our
existing GitLab CI pipelines automatically render PDFs. We
provide a permanent link to the current version of an activity
within the Blackboard framework; students will click on the
link and access always updated content. Our current process
does require consistent directory structures and filenames; if
these change, the instructor must update the link in Black-
board. The permanent links only work for public content,
as internal or private content requires GitLab authentication
through a privileged account. In the future, we plan to evaluate
options for automatic user authentication from the Blackboard
LMS to our GitLab instance. Planned versions of the university
Blackboard LMS include a REST API through which we could
design a CI pipeline to automatically create and load tests at a
set time as well as support automating analytic programs for
assessments.



Our current CI implementation uses the GitLab shell-runner
that executes individual pipelines inside of a monolithic build
environment. This requires IT support staff to pre-install all
required packages (e.g. Python, Ruby, TeX Live, Asciidoctor).
Users who create new pipelines for new projects may request
additional package installation by raising an issue within their
GitLab project. While this enables straightforward integration,
it does not strictly guarantee reproducibility. We plan to
implement a container-driven build environment to allow users
to specify and approve their own dependencies. Our common
CI pipelines include creating PDF documents with asciidoctor-
pdf, creating slides with reveal.js, and using python programs
to automate calculations and analysis.

For Courseware as Code to be successful, we had to commu-
nicate the vision to all of our faculty and make it accessible.
Because most of our instructors have little to no familiarity
with GitLab or DVCS in general, we provide instructors with a
faculty and staff handbook during on-boarding. The handbook
includes a variety of DVCS and Courseware as Code topics
such as our project repository structure for courses, our access
request process, and how-to guides for git. Depending on the
expertise of an incoming instructor, we may assign them under
a module manager. The module manager will integrate the
instructor by providing training on syntax, format, commands,
and answering individual questions. Fully integrated instruc-
tors can contribute as content developers at any time and from
any location. We conduct most development discussions within
the applicable GitLab course project through commit com-
ments, merge requests, and issues. Instructors can develop and
discuss content without depending on a set weekly or monthly
change meeting. The DVCS automatically stores historical
data of what changes were made, when they were made, who
made them, and what discussions occurred. Demonstrating the
value and utility of our automated pipelines and our interest in
their input helps create a desire to learn in the majority of our
instructors. When launching, we provided training classes and
meetings to present and discuss the concept and address spe-
cific workflow nuances. Our instructors have understood the
concept best through consistent leadership in requiring them
to use the DVCS content and processes and pure repetition.
Several instructors initially resisted and stated their need of
WYSIWYG editors, but the power of universal by-line version
control for the entire history of every piece of courseware
overcame their hesitance and concerns by providing peace of
mind in the change process.

IV. COURSEWARE AS CODE RESULTS

The total number of commits since inception provides the
most objective indicator of Courseware as Code’s success (see
Figure 1). Although we understand the number of commits
does not directly correlate to the amount or quality of content
added and changed, it provides one metric by which to gain
an appreciation of scope. Over our inagural year of using
Courseware as Code from January 2017 to January 2018, our
school taught over 250 students in 30 different classes that
included the core, C, bash, Powershell, and Python courseware.

Fig. 1. Total repository contribution in commits from January 2017 to April
2018 by project.

By April 2018, our courseware base had 6,787 commits over
15 projects with an average of 26.5 commits per instructor.
Objectively with these numbers and subjectively with observed
and stated instructor and student material engagement, we be-
lieve we have exceeded simple compliance and achieved true
buy-in to Courseware as Code. For our core course, 29 instruc-
tors over up to three disparate class locations stayed engaged
with 5,085 commits and 113 issues raised and discussed (see
Figures 1 and 2). Our oversight for the programming courses
allows greater autonomy and variance in course delivery and
assessment than we require for our core course. This results in
less need for synchronization and discussion, as evidenced by
fewer issues raised (see Figure 3). Despite less discussion,
each of the programming courses have over 200 commits
between their three projects with C programming leading the
pack at 914 total commits. Subjectively, the value in providing
new instructors with not only course material but also the
history of courseware development has enabled instructor
turnovers to occur with little to no dips in course quality.
Instructors have embraced the DVCS peer-review process. The
ability to view courseware and its evolution on a by-line basis
enables instructors to better understand gaps between what
they observe for actual classroom outcomes in contrast to
intended learning outcomes. This also provides instructors and
all contributors with the freedom to independently develop
innovative changes to courseware and submit their ideas and
content forward for review, approval, and implementation.
Even if a submission does not get approved, it sparks a
discusson on technical content and andragogy that can benefit
the entire faculty both at that time and in the future.

As a whole, our GitLab instance has synchronized over 175
users with an average of 6.7 merge requests submitted per user.
Out of these users, over 100 of them are not in our faculty.
These external users include students and workforce members.
While some of these users have contributed to our courseware,
many opt to use the platform for their own small team
organizational training based on its efficacy for accountable



Fig. 2. Core course participation in number of total contributors from January
2017 to April 2018, number of issues opened, and number of issues closed.

Fig. 3. Programming participation in number of total contributors from
January 2017 to April 2018, number of issues opened, and number of issues
closed.

collaboration, synchronization, and iterative development.

V. CONCLUSIONS ABOUT COURSEWARE AS CODE

Based on the demonstrated success of using DVCS for
courseware management, synchronization, and improvement,
our school will continue using it to maintain our technical
course content. Future growth could include opening it up as a
platform for student submissions as well as per-question gran-
ularity in tracking assessment performance. Since its inception,
we have seen nearly 7000 commits to courseware contributed
by over 41 authors including 9 student authors. Courseware
contributors raised over 140 issues of which over 130 were
resolved. We believe this high amount of participation proves
the utility of the Courseware as Code concept for individual
and small group educational content management and iterative
improvement. Although we used GitLab, a DVCS primarily
used for computer code version control and the creation and
maintenance of computer-related curricula, the benefits we
have illustrated could also prove useful for non-technical
curricula. The ability to crowdsource courseware development
and co-opt distributed experts exponentially increases capacity
and broadens and deepens the capability of curriculum de-

velopment teams. Additionally, a distributed core of subject
matter experts can rapidly review courseware that requires
dynamic revisions for a variety of reasons (e.g., advancements
in technology, technology obsolescence, evolution of business
practices), further enabling an efficient CI/CD process with
rigorous approvals. We recommend other educational insti-
tutions consider DVCS and automated workflows to enable
transparency in materials and organized synchronization that
empowers widespread contribution to further education.

REFERENCES

[1] Curtis Clifton, Lisa C. Kaczmarczyk, and Michael Mrozek. 2007.
Subverting the fundamentals sequence: using version control to enhance
course management. In Proceedings of the 38th SIGCSE technical
symposium on Computer science education (SIGCSE ’07). ACM, New
York, NY, USA, 86-90.

[2] J. Kelleher, ”Employing git in the classroom,” 2014 World Congress
on Computer Applications and Information Systems (WCCAIS), Ham-
mamet, 2014, pp. 1-4.

[3] Joseph Lawrance, Seikyung Jung, and Charles Wiseman. 2013. Git on
the cloud in the classroom. In Proceeding of the 44th ACM technical
symposium on Computer science education (SIGCSE ’13). ACM, New
York, NY, USA, 639-644.

[4] S. Mandala and K. A. Gary, ”Distributed Version Control for Curricular
Content Management,” 2013 IEEE Frontiers in Education Conference
(FIE), Oklahoma City, OK, 2013, pp. 802-804.

[5] A. Tirkey and K. A. Gary, ”Curricular change management with Git and
Drupal: A tool to support flexible curricular development workflows,”
2017 IEEE 15th International Conference on Software Engineering
Research, Management and Applications (SERA), London, 2017, pp.
247-253.

[6] A. Zagalsky, J. Feliciano, M. Storey, Y. Zhao, and W. Wang. ”The Emer-
gence of GitHub as a Collaborative Platform for Education,” Motivation
and Dynamics of the Open Classroom, CSCW 2015, Vancouver, BC,
Canada, March 14-28, 2015.


